
Final Report of the ATLAS Detector Simulation

Performance Assessment Group

J. Apostolakis, A. Buckley, A. Dotti, Z. Marshall

March 31, 2010 CERN-LCGAPP-2010-01

Abstract

In this document we discuss the output of the Detector Simulation Per-
formance Assessment Group. We list a number of methods which consume
significant CPU time and/or allocate significant memory as first targets
for potential improvements which are uncorrelated with the physics con-
tent of the simulation. We suggest several approaches for reducing CPU
time, by reducing the number of steps or tracks simulated. To maintain
physics accuracy for the estimation of second-order quantities, e.g. reso-
lution, the CPU reduction should ideally be achieved while maintaining
the important steps and tracks which contribute to the leakage of energy
from an absorbing element into an active element (or vice-versa), or be-
tween active elements. An investigation is attempting to identify the most
productive areas for reducing the number of steps and tracks simulated
beyond the existing use of production thresholds.

We have identified a number of existing Geant capabilities which can
be exploited in order to reduce the number of simulation steps and, pro-
portionally, the CPU time. A number of these carry an expected low
or moderate impact on the physics accuracy of typical setups, and are
strong candidates for investigation in the near and medium future. Oth-
ers carry the risk of greater impact on physics accuracy, and will require
greater investigation. We have started to investigate the relationship for
electrons between energy deposition, kinetic energy and step size, in order
to identify whether a fraction of steps could be eliminated with negligi-
ble or low impact on the location or quantity of energy deposition. The
initial finding is that opportunities could exist to eliminate about 8% of
the steps, responsible for about 1% of energy deposition; there is need to
study the impact of this change and to determine the best way of imple-
menting it. Deeper investigations of the relation between these quantities
is planned. We consider the allocation and use of memory as an important
factor for further performance improvement and a target area for short
and medium-term investigation.

Note: The Abstract and Section 4 comprise the Executive
Summary

1

Contents

1 Introduction 3
1.1 Mandate and Membership . 3
1.2 Structure of the Simulation and Understanding of the Mandate 3
1.3 Methods for improving simulation performance 5

2 Simulation performances: tracking of particles 5
2.1 Production threshold . 7
2.2 Other cut strategies . 9

2.2.1 Cut per region . 9
2.2.2 Electromagnetic option EMX 10
2.2.3 Sub-cut option . 11

2.3 Low energy secondaries . 11
2.4 Conclusions . 12

3 Software performance measurement 14
3.1 Results with Hephaestus . 15
3.2 Results with Callgrind . 19

3.2.1 Definition of step length 19
3.2.2 Physics Processes . 20
3.2.3 Conclusions on callgrind analysis 21

3.3 Suggestions for the Reduction of Memory 23

4 Conclusions and Next Steps 24
4.1 List of Items for Optimization 24

2

1 Introduction

The ATLAS Detector Simulation Performance Assessment Group was set up as
a joint effort of the ATLAS and SFT Groups in November of 2009.

1.1 Mandate and Membership

The mandate of the group was to identify the parts of the ATLAS detector sim-
ulation and of the Geant4 toolkit which are currently limiting events produc-
tion. The group was to report on the key elements of the ATLAS and Geant4
implementations which are the highest consumers of CPU cycles, memory allo-
cations, and memory use. It was to note additional issues which were found to
be or could be relevant to performance. It was to make a ranking of the leading
elements for improvement, with a first assessment of their potential impact.

The group comprised simulation software experts from both the ATLAS
and Geant4 Collaborations, each of which is familiar with the code involved.
The members are Andrea Dotti and John Apostolakis from Geant4, and Andy
Buckley and Zach Marshall from ATLAS.

1.2 Structure of the Simulation and Understanding of the
Mandate

The ATLAS simulation software is divided into several steps, shown in Fig-
ure 1 [1]. The most time consuming step of the simulation, which limits pro-
duction for typical physics events, is the step labeled “Simulation.” In this
step, particles from a physics event generator (e.g. Pythia, Herwig, etc.) are
propagated through the ATLAS detector using the Geant4 toolkit to simu-
late interactions. Energy deposited in active detector elements is collected by
“sensitive detectors.”

It is implicit in the timescale and scope of the mandate that the group was
meant to provide suggestions to improve the performance, but not to actually
implement those suggestions. The mandate pointed to the limiting factor in
production of simulated events, which in the case of ATLAS is CPU time per
event. It was agreed, therefore, that CPU time per event would be viewed as
the most critical performance metric. Other metrics, including total memory
consumption, resident set size, memory “churn” (allocation and deallocation per
event), cache misses, etc., are viewed as second-order effects that should only
be addressed insofar as they affect the CPU time per event.

Minimum bias (minbias) events generated at a center of mass energy of
10 TeV using Pythia were used for all performance evaluations. Results were
cross-checked against top anti-top production (tt̄) events generated using Pythia
at center of mass energy of 10 TeV. While it is clear that Pythia is sub-optimal
for top physics studies, for simulation performance evaluations only event ac-
tivity is relevant. Generally, the top events produced more significant activity
in the central calorimetry, as expected. The general conclusions and major

3

Figure 1: The flow of the ATLAS simulation software, from event generators
(top left) through reconstruction (top right). Algorithms are placed in boxes
and persistent data objects are placed in rounded boxes. The optional pile-up
portion of the chain, used only when events are overlaid, is dashed. Generators
are used to produce data in HepMC format. Monte Carlo truth is saved in
addition to energy depositions in the detector (hits). This truth is merged
into Simulated Data Objects (SDOs) during the digitization. Also, during the
digitization stage, Read Out Driver (ROD) electronics are simulated. This paper
will mostly address the current production choke-point, which is the Simulation
step that relies on the Geant4 toolkit.

4

hotspots in both samples, however, remain the same. The top events are repre-
sentative of typical signal events at the LHC, and the minimum bias of typical
backgrounds.

1.3 Methods for improving simulation performance

There are two fundamental ways to improve simulation performance: reduc-
ing the simulation time required by removing or simplifying the treatment of
“unnecessary” particles, and by improving the simulation code itself. The ap-
proaches must be combined in order to achieve the best software performance
without sacrificing the accuracy of the simulated detector physics.

The Geant4 toolkit can be used to describe physics for many different
applications. Naturally, the physics most of interest to ATLAS is only a small
subset of the physics that can be simulated using the toolkit. Very low energy
particles in large blocks of iron shielding, for example, need not be simulated in
order to achieve even the most precise physics results. One must be careful in
modifying cuts on particles, however, that one does not affect detector response.
Section 2 will describe the profiling already done to determine the magnitude
of this problem in the current ATLAS simulation and make some suggestions
about how to best address this issue.

Profiling is generally sufficient to reveal fundamental problems with code.
The solutions are also well-known. In some cases, CPU time can be traded for
memory use or disk space. Code optimization may involve both improving code
where necessary and, when CPU time is by far the limiting factor, reducing
CPU use at the expense of other resources. Section 3 will describe the profiling
done to expose problematic methods in the code and suggest some modifications
to improve performance.

Section 4 presents a prioritized summary of the key issues with time scale
estimates for each.

The Appendix provides some of the recipes for running benchmarking code
that were used during these analyses.

This report is also available online [2], where many of the figures have better
resolution.

2 Simulation performances: tracking of parti-
cles

The time spent in the simulation is proportional to the number of steps (G4Steps)
that are needed to track a particle. We can thus estimate the simulation time in
terms of number of performed G4Steps. Table 1 shows the number of G4Steps
for different regions of the ATLAS detector and for different particle species.
The numbers (in units of 106) have been obtained with the simulation of 50 tt̄
events.

5

Number of G4Steps e− e+ Photon π± Proton Neutron Other Total
Units in 106

Px 2.32 0.24 2.37 0.68 0.14 0.30 0.21 0.3%
Sct 2.42 0.37 6.52 0.82 0.20 0.89 0.25 0.6%
Trt 5.37 1.05 40.20 1.82 0.50 5.46 0.53 2.9%
Sev 49.88 7.35 40.63 0.42 0.35 3.82 0.46 5.4%
Cry 48.92 6.48 49.01 0.34 0.40 7.38 0.41 6.0%
Pre 3.99 0.49 10.41 0.09 0.06 1.73 0.03 0.9%
EMB 79.94 11.76 66.26 0.74 0.56 32.59 0.38 10.2%
EMEC 137.13 22.73 114.97 1.34 1.03 63.34 0.65 18.1%
HCB 10.10 0.96 14.88 0.14 0.18 11.46 0.25 2.0%
HEC 17.49 1.67 23.01 0.23 0.30 20.79 0.58 3.4%
FC1 303.56 31.82 204.14 1.79 1.61 64.26 0.80 32.2%
FC23 90.15 13.18 42.67 0.91 0.83 87.99 0.72 12.5%
FCO 10.23 1.46 3.80 0.10 0.12 1.01 0.03 0.9%
LAr 2.50 0.25 2.97 0.06 0.11 0.54 0.05 0.3%
Mu 31.85 4.34 22.09 0.11 0.23 4.25 0.50 3.4%
Other 4.89 0.86 10.13 0.13 0.11 1.05 0.04 0.9%

Total (%) 42.4% 5.6% 34.6% 0.5% 0.4% 16.2% 0.3% 100%

Table 1: Number of G4Steps processed for some ATLAS regions and different
particle species. These number have been collected during the simulation of 50
tt̄ events.

The various subdetector categories in Table 1 are:

Px : Pixels and pixel services
Sct : Semi-conductor Tracker and support structure
Trt : Transition radiation tracker and support structure
Sev : General ID services, beampipe, beam luminosity monitor, and beam

conditions monitor
Cryo : associated with the cryostat

Pre : presamplers in front of the barrel and endcap calorimeters
EMB : anything in the electromagnetic barrel calorimeter (including EMB-

specific support)
EMEC : anything in the electromagnetic endcap calorimeter (including EMEC-

specific support)
HCB : Tile (including tile-specific support)
HEC : anything in the hadronic endcap calorimeter (including HEC-specific

support)
FC1 : forward calorimeter (FCAL), EM module

FC23 : forward calorimeter (FCAL), hadronic modules
FCO : Other parts of the FCAL
LAr : anything not included in those volumes above, but still a part of the

liquid argon system
Mu : All muon systems

Other : anything else

A very large fraction of G4Steps (80%) are needed to simulate the electro-
magnetic showers in the liquid argon (LAr) calorimeters (barrel, endcap electro-
magnetic and hadronic, and forward calorimeters). The simulation optimization
should concentrate on the simulation of electrons in LAr calorimeters.

6

Figure 2: Number of G4Steps performed in the considered ATLAS volumes as
a function of pseudo-rapidity.

Figure 2 shows the number of G4Steps performed in the different detectors,
spread evenly over the detectors’ coverage in pseudo-rapidity. This plot shows
that a large fraction of the simulation is performed in the very forward region
(see FC1, FC23 and FCO rows of Table 1). This region (η >3.2) is responsible
for 46% of the steps. It is likely that the distribution of steps within the detectors
is not uniform in pseudo-rapidity, and so the distribution may be even more
heavily weighted towards the forward region than this picture indicates.

Geant4 provides a set of built-in tools to improve the performance of any
simulation. These potentially allow a reduction in the time spent in the simu-
lation at the price of a decrease of the detail of the simulation. Is it up to the
developer of the application to study the effect of these simplifications on the
quality of the predictions and identify a reasonable trade-off between speed and
accuracy.

2.1 Production threshold

The first possibility is to tune the production threshold. Production thresh-
olds are discussed in Chapter 5.4 of the Geant4 User’s Guide for Application
Developers [3]. These cuts, applied by default to the δ-electron production
and bremsstrahlung electromagnetic processes, prevent the production of a sec-
ondary below threshold. The threshold values, which are identical for electrons,
positrons, and photons, for the ATLAS LAr calorimeters are show in Table 2.

When defining a production threshold it is important to verify the effect of

7

Subdetector Range Cut Absorber Thickness Liquid Argon
Thickness

EM Barrel 100 µm 1.13-1.53 mm 200 µm
EM Endcap 100 µm 1.7-2.2 mm 200 µm
Hadronic Endcap 1 mm 25-50 mm 8.5 mm
Forward Calorimeter 30 µm Varies 269-508 µm

Table 2: Range cuts, absorber thickness, and liquid argon thickness for each of
the ATLAS LAr calorimeters. The volume thicknesses are provided to give a
sense of the fundamental scale of the geometry of the detectors.

this in the simulation quality. Figure 3 [4] shows the variation of the response
(left) and resolution (right) of the electromagnetic (EM) barrel calorimeter.
These plots show a bias of less than 1% in response and an increase of 2% of
the resolution varying the production threshold range cut from 10 µm to 1 mm.

Figure 3: Left, variation in average deposited energy (response) and, right,
variation in energy resolution with production threshold cut. Simulation of the
EM barrel calorimeter with the QGSP BERT physics list.

The values of these cuts should be optimized studying the variation of CPU
time as a function of the cut value. As an example, the left plot of Figure 4
shows the correlation between the response to electrons as a function of the
CPU time (in relative units) obtained with a simplified Pb-LAr calorimeter. In
the right plot different physics lists and Geant4 versions are compared in terms
of CPU performance as a function of the production cuts. Red points show the
results for Geant4 9.3 with the default EM physics list. The ∼35% faster EMV
option has been studied by ATLAS and results showed a poor agreement with
test-beam data.

In this simplified setup a change in the production threshold from 100 µm to
1 mm would decrease CPU time spent in the simulation by ∼15%, at the price
of a reduction of collected visible energy well below 1%.

8

A review of the production threshold could bring a gain a substantial benefit
in terms of CPU time, while keeping a good quality of physics performance.

Figure 4: Simulation of 10 GeV electrons in sampling calorimeter 2.3 mm Pb /
5.7 mm LAr. Left: Bias on the energy response as a function of CPU timing.
Right: CPU timing as a function of the production threshold cut. Different
physics lists and Geant4 version are shown.

At the moment ATLAS strategy is to use a single cut for electrons and
photons. However it is also possible to set a cut value separately for electrons
and photons. Table 3 (the Opt0 rows) summarizes the CPU performance and
the deposited energy (in active media) for different cut values. The results have
been obtained on a simplified ATLAS barrel EM calorimeter setup (primary is
a 10 GeV electron). Results are normalized to ATLAS defaults.

As expected, increasing the cut value reduces the time spent for simulation
at a price of less energy deposited in the active material. For example increasing
the cut from 0.1 mm (current choice) to 0.7 mm reduces the simulation time
by 12%, and the energy deposited in LAr is reduced by almost half a percent.
Choosing independently the cut value for electron and photons (e.g increasing
only the cut for photons to 0.7 mm) reduces the simulation time by 4% while
keeping the difference in response within 0.4%.

Increasing the cut values is, at the moment, the most promising strategy
to increase CPU performance while keeping a (relatively) small bias on the
deposited energy.

2.2 Other cut strategies

ATLAS is using a cut for neutrons (tracking is abandoned after 150 ns), and
neutrinos are not tracked. These allowed for a significant speed up of the sim-
ulation. Other strategies to decrease the simulation time provided by Geant4
are discussed here.

2.2.1 Cut per region

A different threshold cut can be set for each defined G4Region. At the mo-
ment G4Regions in ATLAS are defined at the detector level. Increasing the

9

E.m. Cut e± Cut γ CPU perf. ∆Edep Notes
Option (mm) (mm)

Opt0 0.1 0.01 +6% +0.52%
Opt0 0.1 0.1 — — ATLAS: Reference

EM Barrel and End-Cap
Opt0 0.1 0.7 -4% -0.39%
Opt0 0.7 0.7 -12% -0.45%
Opt2 0.7 0.7 -30% -1.55% Apply Cut: EMX

(see Section 2.2.2

Table 3: CPU performance and deposited energy relative difference as a function
of different cuts. Results are normalized to ATLAS defaults.

granularity of G4Regions would allow optimization of each part of the detec-
tor independently and reduce the simulation time in the uninteresting regions
(using high cut values in dead-material).

Review of the cut values for the different regions is probably the easiest and
most effective strategy to reduce CPU requirements.

Some time ago, a “Range Monitor” was developed for ATLAS. The code is
still available (in
∼disimone/public/RangeMonitor/ on CERN AFS), although it would need to
be ported to a newer release of Athena. The monitor runs at simulation time
(e.g. during simulation of tt̄ events), collecting information about all particles
created in a particular volume. For that volume, it tests how many of the
particles escape, and based on that information proposes range cuts for each
volume. The volumes with similar range cuts can then be collected into a single
G4Region and the range cuts in that region can be modified during a typical
simulation run. This tool may be helpful in evaluating and assigning appropriate
range cuts, particularly to dead materials.

2.2.2 Electromagnetic option EMX

The production threshold cut can be turned on for any process. The elec-
tromagnetic physics option 2 turns on a threshold cut for all electromagnetic
processes [5]. The EMX physics lists use this option (caveat: up to Geant4
version 9.1, EMX also used the sub-cut option, described in Section 2.2.3). This
option gives an important increase in performances, at the price of introducing
a relatively large bias in the visible energy.

Figure 4 shows that EMX is about 20% faster than standard electromagnetic-
physics (with a cut value of 1 mm) . The energy difference is of about 2%. One
may be able to decrease the cut value and apply the EMX option in order to
decrease both the CPU time and the difference in deposited energy.

10

2.2.3 Sub-cut option

Soft electromagnetic particles play a different role depending on the volume in
which they are produced. Secondaries produced in the active material have
a higher impact on calorimeter simulation than secondaries produced in the
absorber. Ideally, one would like to have a high range cut value for secondaries
produced in the absorber material that are completely absorbed before reaching
any active material, while having a much lower range cut for particles that are
either produced in the active material or near the boundaries absorber/active
material. Geant4 allows this through the sub-cut option.

Before Geant4 version 9.2, the EMX electromagnetic option included this
sub-cut by default. Since version 9.2, however, this option has been turned off
by default, because it caused some issues when used in combination with parallel
navigation. This option may provide some benefits in ATLAS.

Figure 5 shows the comparison in a simplified ATLAS HEC calorimeter of
different physics lists as a function of the range cut. Concentrating on Geant4
version 9.1.p02 with EMX (sub-cut option activated), deposited energy and
energy resolution are very stable as a function of the range cut.

Figure 5: Simulation of 30 GeV electrons in a simplified ATLAS HEC. Left:
visible energy as a function of range cut. Right: resolution as a function of
range cut. Different versions of Geant4 and different physics lists are shown.

2.3 Low energy secondaries

Geant4 also provides tracking cuts, discussed in paragraph 5.4.6 of the Geant4
User’s guide for Application Developers [3]. In order to evaluate the potential
impact of these cuts, one can estimate the role of the low energy particles.

From Table 1 one can see that the largest fraction of the steps is taken track-
ing electrons (42%). The LAr calorimeters are clearly the dominant detectors
in terms of number of steps (three quarters of all steps). We thus concentrate
on energy deposited by electrons in LAr in this section.

Electrons undergo electromagnetic processes developing electromagnetic show-
ers; basically all their kinetic energy is released in the calorimeters. A tracking
cut would prevent further tracking of the electron and all kinetic energy would

11

be deposited locally. In this sense a tracking cut “disturbs” the development of
electromagnetic showers. If an electron is killed in the absorber, all its kinetic
energy is “lost” and the value of the measured energy decreases. On the other
hand, an electron being killed in the active material (LAr) increases the response
of the calorimeter. The two effects will compete and it is difficult to predict the
final effect without dedicated studies. However, one can try to estimate the
order of magnitude of this “displacement.”

The left plot of Figure 6 shows the electron spectra in terms of kinetic energy
for the LAr barrel calorimeter. A single electron contributes to this distribution
several times, once for each G4Step, until it finally reaches zero kinetic energy.

From this distribution we can compute the fraction of G4Steps that would
be cut by a tracking cut. Since the simulation time spent in one detector is
proportional to the number of G4Steps, this fraction is a rough measurement of
the fraction of CPU needed to track low energy particles.

We calculate the fraction of energy deposited by these cut G4Steps, obtaining
a rough estimate of the effect, in terms of deposited energy, of a tracking cut.

Figure 6 illustrates the results for a tracking cut of about 44 keV. The cu-
mulative distribution of the number of G4Steps as a function of their kinetic
energy is shown in the middle plot; about 8% of the G4Steps have a kinetic
energy below 44 keV. Finally the third plot shows the distribution of the de-
posited energy at each G4Step as a function of the particle kinetic energy at
the beginning of the step. The area at the left of the tracking cut is the energy
deposited by killed tracks and is less than 2% of the total deposited energy.

Results, for different values of the tracking cut and for the dominant vol-
umes, are summarized in Table 4. The use of such tracking cut could give an
improvement in the CPU performance. Initial trials have been inconclusive as
to the value of such a tracking cut in improving performance. Further investi-
gation is planned. In addition such a strategy requires a detailed validation on
the ATLAS setup to evaluate the effect on calorimetric observables.

2.4 Conclusions

In this section we have briefly outlined several strategies that could lead to a
possible speed-up of the simulation of the ATLAS detector. Additional inves-
tigation of these strategies should be carried out, and a validation of physics
results should be performed. We concentrated on tools already available in
Geant4 that could reduce the computing time with essentially no further soft-
ware development.

Given that a large fraction of the simulation time is spent tracking EM
particles in calorimeters (mainly LAr EM barrel, endcap, hadronic endcap and
forward), a possible list of prioritized recommendations is as follows:

• We can clearly see that the majority of the G4Steps are tracked in the
forward (|η| > 3) region. Documenting the necessary physics simulation
accuracy in forward region and seeking a compromise between peformance

12

Figure 6: G4Step distribution as a function of the particle kinetic energy (Ekin)
at the beginning of each G4Step (left), the cumulative distribution of this quan-
tity is shown in the middle. The third plot shows the two-dimensional distri-
bution of the deposited energy (Edep) in each G4Step as a function of the track
kinetic energy. The effect of a possible tracking cut at 44 keV is shown (see text
for explanation).

and accuracy should be investigated with priority. Given that 47.5% per-
cent of steps in tt̄ events are made in the FCAL, the potential for CPU
savings is the greatest for this detector and could reach 33% of CPU time.

• Significant gains may be achieved by reducing the primary particle pseu-
dorapidity acceptance in the simulation. Currently all primaries are simu-
lated out to pseudorapidity of 6.0, resulting in some unnecessary activity
in the very forward region.

• Increasing cut values in the FCAL is also a promising strategy to reduce
CPU time.

• An optimization of the production range cut, or the use of advanced elec-
tromagnetic options could lead to a reduction of the computing time, in
some cases, of several percent. The bias introduced by these cuts has to be
studied in more detail, first on simplified setups and then on full ATLAS
geometry.

• An important fraction of the simulation time is used in tracking low energy
particles. These are responsible for a relatively small fraction of the energy
deposited in the calorimeters. A tracking cut could reduce the number
of steps required in LAr by about 10%, while affecting only 1% of the
deposited energy.

Additional CPU time could be saved by the use of more advanced features
such as, for example, sub-cut or EMX options. The effect of these options is, at
the moment, not completely clear.

13

Detector Tracking cut Fraction of G4Steps Fraction of Edep

threshold (with Ekin <Thr) (for steps with Ekin <Thr)

EMB 30 keV 5% 0.87%
44 keV 8% 1.65%
53 keV 10% 2.27%
91 keV 20% 5.30%

EMEC 30 keV 5% 0.83%
44 keV 8% 1.56%
53 keV 10% 2.13%
110 keV 20% 6.66%

FC1 17 keV 5% 0.43%
30 keV 8% 1.06%
37 keV 10% 1.43%
76 keV 20% 4.63%

FC23 21 keV 5% 0.50%
36 keV 8% 1.23%
44 keV 10% 1.67%
110 keV 20% 6.00%

Table 4: Fraction of energy deposited by electron with Ekin smaller than the
given threshold. The fraction of G4Steps with Ekin smaller than threshold is
also displayed.

3 Software performance measurement

Software performance metrics are obtained for the stage of ATLAS simulation
involving Geant4, using the callgrind and Hephaestus tools to count CPU
cycles and memory allocation respectively.

Callgrind is accessed as a tool in the valgrind suite [6], instrumenting function
call rates through the symbol call tree. Hephaestus [7] is a leak-checker option
on the ATLAS Athena framework, designed to monitor calls to malloc within
the main Athena event loop, but which optionally produces malloc call trees
usable by callgrind analysis tools such as kcachegrind (N.B. Hephaestus misses
calls to calloc/realloc, but these are not used in the relevant Geant4 and
Athena code). For these tests, several modifications are made to the normal
Athena setup:

• Athena’s normal use of the tcmalloc memory allocators is suppressed, since
tcmalloc does not play well with valgrind

• Hephaestus’ usual leak checking scope is reduced from Gaudi::Algo-
rithm::sysExecute() to G4TrackingManager::ProcessOneTrack(),
which still should be sufficient to catch all relevant memory allocation and
deallocation.

14

Monitoring output from G4 simulation runs of pre-generated minimum bias
and tt̄ events has been used to identify the busiest processing hot-spots in the
ATLAS simulation code. The benchmark version of the ATLAS simulation
software to be used for these studies is the ATLAS software release 15.6.1, for
which the production version of Geant4 is 4.9.2.patch2.atlas1, a modification
of the standard G4.9.2.patch2 to also include:

• A new stepper implementation, G4AtlasRK4 (turned off by default, in-
cluding for these studies)

• A new magnetic field, G4CachedMagneticField (turned off by default,
including for these studies)

• Bug fixes to G4QElasticCrossSection and G4HadronElastic

For comparison, we will use a new ATLAS patch of G4.9.2.patch2 which is
not yet used for any ATLAS production, G4.9.2.patch2.atlas3. In addition to
the private patches in the “atlas1” version, “atlas3” includes:

• A new version of G4TouchableHistory to reduce per-event “churn” of
memory allocation

• A patch to modify EM physics initialisation in G4ProductionCutTable.
This patch results in range cut changes on the level of 0.5%, and so may
affect physics results

• Modification to avoid per-hadron newing of double arrays in the Bertini
cascade (in lieu of a more complete Bertini model rewrite)

The “atlas2” patch only differs from atlas1 in that it is built against a dif-
ferent patch version of CLHEP. No tests have been performed with this patch.

More detailed “recipes” for running the ATLAS simulation in these con-
figurations with minimum bias and tt̄ events, with callgrind and Hephaeustus
instrumentation, may be found in the Appendix.

3.1 Results with Hephaestus

Hephaestus provides two quantities for every method called during the simula-
tion: the inclusive amount of memory allocated by that method and all methods
that it calls (incl), and the amount of memory allocated by that method alone,
including calls to malloc and stl functions (self). The methods with large self
typically indicate hotspots for optimization, and methods with large incl may
indicate places were code re-writes or even re-designs may be beneficial. Ta-
ble 5 shows the methods with largest self in both the atlas1 and atlas3 builds,
and Table 6 shows the methods with largest incl in both builds, eliding those
which also appear in Table 5. In both tables, the displayed percentages have
been scaled from the raw Hephaestus output as shown in kcachegrind to the
percentage allocated to the top level G4SteppingManager::Stepping function,

15

atlas1 atlas3
method self incl self incl

malloc 62.11 62.11 47.10 47.10
G4NavigationHistory::G4NavigationHistory 23.69 23.69 29.37 29.37
G4Transportation::PostStepDoIta 23.69 47.37
G4NucleiModel::generateParticleFate 7.68 24.69 9.36 37.07

LArG4Identifier::LArG4Identifier(LArG4Identifier const&)b 5.73 5.73 7.15 7.15
G4ElementaryParticleCollider::generateSCMfinalState 5.42 7.65 6.54 16.27
G4NucleiModel::generateModel 4.68 4.68 5.63 5.63

LArHitMerger::processb 4.22 4.22 5.27 5.27
G4NucleonSampler::GetMultiplicityT0 4.63 4.63
G4IntraNucleiCascader::collide 3.60 33.47 4.33 47.56
G4NucleiModel::generateInteractionPartners 3.50 3.50 4.28 4.28
G4ElementaryParticleCollider::collide(G4Inucl-

-ElementaryParticle*, G4InuclElementaryParticle*,
G4CollisionOutput&) 2.73 11.76 3.31 21.25

G4NucleonSampler::GetMultiplicityT1 3.22 3.22
G4NucleiModel::boundaryTransition 1.77 1.77 2.18 2.18

LArBarrelCalculator::Processb 1.47 1.47 1.84 1.84
G4LorentzConverter::toTheCenterOfMass 1.66 1.66
G4EquilibriumEvaporator::collide(G4InuclParticle*,

G4InuclParticle*) 1.55 2.90

Table 5: Methods with the largest allocation and deallocation per event within
the method itself (self) in the atlas1 and atlas3 builds.

namely division by 61.07% for the atlas1 build, and division by 67.01% for the
atlas3 build.

The entries marked with a indicate the method that changed most dra-
matically between 15.6.1-4.9.2.p2.a1 and 15.6.1-4.9.2.p2.a3: the G4Transpor-
tation::PostStepDoIt function. This improvement was obtained by use of
better memory management in G4TouchableHistory to reduce memory churn.
In “atlas1,” the memory activity was assigned to G4Transportation as self,
since G4TouchableHistory had an inline constructor. The entries marked with
b are those which are not present or which have significantly lower values of
the metrics for MB events. These are, as expected, concentrated in the LAr
methods, since with MB events a reduction in calorimetric activity is expected
relative to tt̄ events. The entries marked with c, by contrast, are those which
are increased in MB events relative to tt̄, in particular the LArFCALCalculator-
Base::identifier method: this reflects the increased proportion of forward ac-
tivity in minimum bias events, interacting with the forward calorimeter (FCAL).

From analysis of these Hephaestus profiles, it is clear that four effects dom-
inate the memory allocation and deallocation per event during simulation with
Athena in the atlas1 build:

• G4TouchableHistory is responsible for 25% of the memory churn

• QGSP BERT (in particular the Bertini cascade) and its related methods
are responsible for 40% of the memory churn

• G4NavigationHistory’s constructor is responsible for 25% of the total
churn

16

• LArG4Identifiers and related methods are responsible for 10% of the
memory churn

The first of these, G4TouchableHistory, is completely alleviated by the
patches in the atlas3 build. No further action is necessary.

An almost complete rewrite for optimization of the Bertini methods is al-
ready underway by the Geant4 collaboration. This rewrite may be available for
testing in the coming months, but it may take some time before it reaches a suf-
ficiently high level of validation for physics production in ATLAS. Nonetheless,
it would be extremely beneficial for the ATLAS collaboration to closely follow
these developments and assist with testing when a new version is available.

A G4NavigationHistory is carried by all tracks, and whenever secondaries
are created the navigation history is copied from the primary. It seems unlikely
that any dramatic optimization is possible. But indirect optimizations by, for
example, reducing the complexity of the geometry tree, may still be possible. In
the inner detector, for example, it should not be necessary to embed all modules
within a mother. By removing the mothers and relying on the voxelization
of Geant4, it may be possible to reduce memory churn and speed up the
simulation. In this example in particular, the number of total steps may also
be reduced.

LArG4Identifiers identify read-out channels within the liquid argon calo-
rimeter of ATLAS. Far too many energy deposits are made in the liquid argon
during a typical event to save each one separately to disk. Instead, the hits
are collected during the simulation step into read-out channel collections, each
with its own identifier. In principle, once an identifier has been created, it
should be kept in memory for the remainder of the event. It is reasonable that
some time would be spent in the constructor of the identifiers. However, that
the vast majority of that time is spent copying std::vectors indicates that
the construction of the identifiers has not been optimized or that unnecessary
copying is being done. It is recommended, therefore, that this code be examined
carefully for opportunities for optimization.

17

atlas1 atlas3
Method incl self incl self

G4SteppingManager::Stepping 100 0 100 0
G4SteppingManager::InvokePSDIP 87.43 0 84.36 0
G4SteppingManager::InvokePostStepDoItProcs 87.43 0 84.36 0
G4HadronicProcess::PostStepDoIt 40.00 0 54.90 0
G4CascadeInterface::ApplyYourself 39.00 1.06 53.63 0.49
G4InuclCollider::collide 37.40 1.06 52.30 1.04
G4TouchableHistory::G4TouchableHistory 29.37 0
G4Transportation::PostStepDoIta 29.37 0
G4ElementaryParticleCollider::collide(

G4InuclParticle*,G4InuclParticle*) 11.75 0 21.25 0
LArG4SD::ProcessHitsb 11.15 0 13.91 0
G4ElementaryParticleCollider::generateMultiplicity 8.19 0.31
std::vector<G4InuclElementaryParticle>:: M insert aux 6.27 0 7.60 0
std::vector<short>::operator= 5.73 0 7.15 0
st::vector<double>:: M insert aux 6.57 0
std::vector<G4CascadeParticle>:: M insert aux 4.60 0 5.64 0
std::vector<std::pair¡G4InuclElementaryParticle,

double>>:: M insert aux 3.39 0 4.15 0
std::vector<int>::push back 2.68 0 3.18 0
std::vector<G4CascadParticle>::push back 2.45 0 3.00 0
G4EquilibriumEvaporator::collide 2.42 1.29
std::vector<std::vector<double>>::push back 2.34 0 2.81 0
std::vector<double>::push back 2.23 0 2.88 0
std::vector<double>::vector 1.93 0 2.33 0
G4NucleiModel::boundaryTransition 1.77 0
std::vector<double>:: M fill insert 1.64 0 1.99 0
std::vector<LArG4Identifier>::push back b 1.51 0 1.88 0
LArBarrelCalculator::indentifier b 1.47 0 1.84 0
LA4G4::EC::EnergyCalculator::identifier b 1.41 0 1.73 0
G4QEnvironment::Fragment c 1.21 0.01 1.54 0.01
G4QEnvironment::FSInteraction c 1.21 0.01 1.52 0.01
G4QEnvironment::HadronizeQEnvironment c 1.19 0 1.51 0
G4Quasmon::Fragment c 1.18 0.01 1.48 0.01
G4Quasmon::HadronizeQuasmon c 1.16 0.01 1.48 0.01
LArFCALCalculatorBase::identifier c 1.15 0 1.45 0

Table 6: Methods with the largest allocation and deallocation per event within
the method itself and all methods it calls (incl) in the atlas1 and atlas3 builds.

18

3.2 Results with Callgrind

We have analyzed the output of valgrind runs (with the callgrind module) to
study in which software component most time is spent during the simulation.
The metric analyzed in these runs is the “Instruction Fetch” (Ir). It should be
noted that this metric is a measurement of how many processor instructions
are encountered in each code function and not (directly) the time spent in each
portion of the code. However, as there is a strong correlation between the time
spent in each section of the code and the number of measured Irs, for this
first analysis we decided not to use more sophisticated metrics (CPU cycles per
instructions, cache misses). Measurements have been obtained by simulating
50 events of MB and tt̄ with the two different Geant4 patch versions (atlas1
and atlas3).

Figure 7 shows the call graph for the most time consuming function: G4Step-
pingManager::Stepping. The time spent in operations different from this is
less that 3% of the entire time. The stepping is responsible for tracking the
particles in the geometry, simulating physics processes and manipulating hits.

From Figure 7 we can recognize three “areas”: the sub-tree that includes the
processing of hits in the LAr (LArG4SD::ProcessHits) is responsible for 3.98%
of the total CPU time. This is expected due to the very large number of hits in
LAr calorimeters. This branch of the call graph will not be discussed anymore
in the following: potential improvements in this area require the in-depth review
of the code; the review of LAr geometry (see later) should also bring benefits in
this area.

3.2.1 Definition of step length

In Figure 7, the right-most branch, responsible for the largest fraction of CPU
time (68.86%), shows classes responsible for the definition of the current G4Step’s
length (G4SteppingManager::DefinePhysicalStepLength). This is the most
important component of the simulation, from the CPU time point of view, and
it is possible to sub-divide this branch into two main components:

• Definition of step length from geometry boundaries: a very large part of
the time is spent in transportation process (65.75% of CPU of the entire
application). There are two main elements that contribute in this area
(Figure 9):

– The magnetic field access: G4MagErrorStepper::Stepper is respon-
sible for 26.47% of the CPU time. This time is spent interrogating
directly (2.23%) or indirectly (via
G4ClassicalRK4::DumbStepper, 20.03%) the magnetic field (FADS-
::MagneticFieldMap::GetFieldValue).

– The navigation in a single volume defined by the LArWheelSolid
class. The LArWheelSolid::DistanceToIn and LArWheelSolid-
::DistanceToOut methods alone account for about 15% of the simu-
lation time. No other volume is so expensive in these calculation. All

19

calls to ::DistanceToIn and ::DistanceToOut for all other solids
account, all together, for ∼2%.

• Definition of step length from physics processes:

– G4VEnergyLossProcess::PostStepGetPhysicalInteractionLength
(0.91%)

– G4VEmProcess::PostStepGetPhysicalInteractionLength (1.33%),
mainly photo-electron cross section calculations.

– G4VDiscreteProcess::PostStepGetPhysicalInteractionLength
(5.87%): the time spent in this method is dominated by the access
and calculation of cross sections, through the G4CrossSectionData-
Store class’ methods (about 4%). It is not clear at this moment,
given the complexity and variety of this aspect of the simulation, if
improvements can be made in this part of the code. Further details
on the different components involved in cross section calculation and
access can be found in Figure 8.

– G4VMultipleScattering::PostStepGetPhysicalInteractionLength
(1.83%): the underlying Urban Model 2 is responsible for 1.31% of
the CPU time. A deeper analysis of the Urban Model could show
possible improvements.

3.2.2 Physics Processes

The second most significant area in terms of CPU cost of the call graph contains
two separate sub-trees: the one responsible for the simulation of the contin-
uous processes (G4SteppingManager::InvokeAlongStepDoItProcs) accounts
for 6.34% of the total CPU time, a second sub-tree (15.21% of the simulation
time) is responsible for the simulation of the discrete physics processes.

Of the continuous processes (Figure 10), the most important contribution
comes from the sampling of the energy loss (ionization) fluctuations. G4Univer-
salFluctuation::SampleFluctuation is the most time consuming function;
this method requires several calls to random engines and the use of complex
mathematical functions (exp, log). Any optimization of this part of the code
should thus concentrate on this specific aspect.

The second, and more important, element of the physics simulation is the
“discrete” processes simulation (all processes that produce secondaries). The
call graph of this part is shown in Figure 11. The contribution from the different
processes are summarized in Table 7.

We can observe the following:

• Transportation is the most time consuming process. A further break-down
of this component shows that about 1.35% of the time is spent in manag-
ing G4TouchableHistory objects and 3.02% in G4Navigator::Locate-
GlobalPointAndSetup function. The time spent in these operations is

20

Name CPU Notes

G4Transportation::PostStepDoIt 5.27% Navigation in the geometry
G4HadronicProcess::PostStepDoIt 3.13% Contains interface to Bertini (2.60%)

and gamma nuclear reaction (0.43%)
G4VMultipleScattering::PostStepDoIt 2.98% Define final displacement due to MS:

Urban Model 2
G4VEmProcess::PostStepDoIt 0.53% Compton (0.19%) and photo-electric

effects (0.21%)
G4UHadronElasticProcess::PosteStepDoIt 0.50% Elastic scattering of hadrons
G4VEnergyLossProcess::PostStepDoIt 0.38% Electrons Bremmsstrahlung
G4ParticleChange::UpdateStepForPostStep 0.30%
G4Track::GetVelocity 0.27%
TRTTransitionRadiation::PostStepDoIt 0.19% Simulation of transition

radiation in TRT

Table 7: Main contributions to the simulation time of the different discrete
processes (PostStepDoIt).

proportional to the complexity of the geometry. In particular, the LAr-
WheelSolid::Inside method is responsible of 0.40% of the CPU time, to
be compared to the generic G4Polycone::Inside method (all other vol-
umes described as polycones) of 0.9%. Any improvement in the geometry
should bring benefits also in this part of the simulation.

• The simulation of multiple scattering (Urban Model 2) requires several
calls to random engines and mathematical functions, this process takes
about 3% of CPU time.

• More details on the simulation of hadronic interactions is shown in Fig-
ure 12. From these figure one can see that a (small) amount of time is
spent in manipulating the standard library containers of final state parti-
cles. This, together with results obtained from Hephaestus runs suggest
that a review of the use of standard containers in the Bertini code would
be beneficial.

• The method G4Track::GetVelocity is responsible for 0.77% of the CPU
time of the entire application.

• The (relatively rare) gamma-nuclear reaction process takes approximately
the same CPU time as the elastic scattering of hadrons (0.50%).

3.2.3 Conclusions on callgrind analysis

From the callgrind profiling, several hot spots are apparent, classified as high
or low priority.

High Priority:

• Significant time is devoted to evaluation of the magnetic field (26%). In
particular the time is spent in accessing the value of the field. These results

21

have been obtained using the ATLAS patch number 3 that already includes
potential improvements in this area. Including one or both methods for
reducing the number of times the field is accessed (G4AtlasRK4 and/or
StepperDispatcher) will offer an improvement already measured to be
∼15%.

• Significant time is spent in geometry related methods (distance to in,
distance to out) in the EMEC wheel (15% of the CPU time in tt̄ events).
The EMEC is implemented as a single, large custom solid. Potentially
considerable additional time is spent in energy collection methods because
of this design.

– Undertaking a careful estimate of the speedup achieved by rewriting
this volume and the costs would take at most 2.5 person-months.

– A first rough estimate of the time required to rewrite the geometry
is 6 person-months for development and around 6 person-months for
validation.

– Currently there is a single solid in the GeoModel description, which
is translated into one (or few) large solids in Geant4, each of which
is composed of a large number of surfaces.

– Additional code is required to identify within which “readout chan-
nel” a particle is located, and whether it is in lead or argon. By
using a geometry with finer granularity, this additional code would
be greatly simplified.

• Given the importance of the Bertini cascade for the ATLAS simulation,
it is important to improve the code relative to this area. An area of
improvement to pay particular attention to is the usage of standard library
containers – however, no clear hot spot has been identified. The ongoing
re-design of Bertini should bring benefits in this area.

Low Priority:

• Multiple Scattering (Urban Model 2) takes about 4% of the CPU time, a
deeper analysis of the code should be foreseen to identify possible perfor-
mance improvements.

• Retrieving cross-sections for the calculation of steps length takes about
5% of the total CPU time. This time is distributed equally among several
models and different implementations. It appears challenging to improve
the performances in this area.

• Two utility methods are called several times and are responsible for 2%
of the CPU time: G4Track::GetVelocity and G4PhysicsVector::Get-
Value. Another 2% comes from the use of log and exp functions.

• Additional developments available in Geant4 version 9.3 offer small ad-
ditional improvements - tests should be planned to evaluate their benefit.

22

3.3 Suggestions for the Reduction of Memory

There are several possibilities for reducing the total memory (VMEM) required
by the simulation software, many of which will also reduce the resident set
size (RSS) and potentially provide a CPU improvement. There are already
indications from benchmarking performance that cache misses have a significant
effect on simulation speed, and, therefore, by shrinking the simulation’s memory
footprint it may be possible to considerably improve overall performance.

In the liquid argon barrel and endcap, high voltage field maps are loaded
into memory at the beginning of the run and are used to adjust the hit collection
during the run. In the barrel, floats are used for the high voltage values. In
the endcap, doubles are used for the high voltage values. By changing to floats
everywhere, 13 MB of memory can be saved.

Oracle provides “light” and “full” versions of libraries to LCG. By switching
to the “light” versions during simulation, 40 MB of memory can be saved. These
libraries are not typically used during the run, so RSS would not be reduced
noticeably.

Geant4 divides large volumes with many daughters in order to speed par-
ticle transportation. By optimizing this division in the muon system and liquid
argon barrel calorimeter, it is possible to save 80 MB of memory in the most
current geometries without any noticeable affect on CPU.

It should be possible to release conditions information once it has been used
to build the detector geometry and initialize all sensitive detectors. This release
is already underway, but eventually should save 16 MB of memory.

Several libraries are already available which change the manner in which
memory is allocated. By allocating in different size blocks, or by keeping a
“pool” of memory for quick allocation, it is frequently possible to change the
memory consumption and CPU performance of a memory-heavy application.
The reductions in memory churn described above may reduce the effect of the
allocator, but it is recommended that various available allocators are tested,
including new versions of malloc, tcmalloc, and tbbmalloc. Preliminary tests
indicated a 5-10 MB reduction in total memory consumption with no CPU cost.

When Geant4 constructs an assembly volume, it creates a volume name
that is a mangling of the inputs. This mangling can be rather lengthy. Strings
alone, in fact, consume 15MB of memory during the simulation. By modifying
this mangling, it may be possible to dramatically reduce the memory consump-
tion of these strings. The sensitive detectors in the muon system, however, rely
on these mangled names to determine the location of a step in the geometry
tree. If the reliance on mangled names were removed, then the code would be
much safer against future developments, and it might be possible to reduce the
memory consumed by these long string volume names.

The ATLAS geometry is built first in GeoModel, a geometry format com-
mon to the ATLAS reconstruction, digitization, and simulation software. Af-
terwards it is translated into Geant4 format, and the GeoModel version can
be released from memory. A first iteration of the release was performed last
year and provided 50 MB in total memory savings. There were some elements

23

of the GeoModel geometry, however, which could not be released. The bene-
fit from releasing these additional elements should be evaluated, as it could be
significant.

The ATLAS software framework, Athena, loads a great deal into memory
during initialization in order to prepare for any type of job that might be run.
As a result, many unnecessary libraries and dictionaries are opened in mem-
ory. Other libraries and objects could be dropped once the initialization phase
has been completed. In particular, all python objects could be dropped, all
GeoModel libraries and objects could be dropped, and all transient / persis-
tent converters unnecessary for a simulation job could be dropped. Combined,
these represent several 10’s of MB of total memory consumed by the simulation,
though they are likely not a part of the resident set.

4 Conclusions and Next Steps

Several areas of the ATLAS simulation software have been identified and may be
addressed in order to improve the software’s performance. After some of these
areas have been addressed, it will be necessary to re-evaluate the software’s
performance, as the performance hot spots may change significantly.

In addition to the data already available, the optimization studies would
benefit from running some additional profiling tools. Perfmon2, in particular,
is recommended for examining the simulation. It has the advantage of being
able to look more realistically at CPU time (where callgrind only looks at in-
structions, the time required by which might vary by orders of magnitude). It
can also provide more subtle performance metrics like cache misses and instruc-
tions per cycle, which are critical for understanding code performance and could
reveal significant problems in the software.

The most critical problem to address in moving forward is how one can val-
idate the changes that have been made, particularly in cases where the changes
are expected to affect detector response. This validation will take a coordinated
effort between the detector experts, the simulation experts, and some small
group that has the resources to produce sufficiently large physics samples.

4.1 List of Items for Optimization

All time estimates below exclude delays due to release cycles. That is, the
time should be read as “working time” and not as total time including the
time required to produce a fresh software release and deploy it to the Grid
(particularly in the case of ATLAS validation). Where noted, changes can be
made in an Athena production cache, easing the task of validation considerably
for ATLAS. Most, if not all, of these options can be validated in parallel if
sufficient manpower is made available.

No development is necessary for the following options:
CPU Optimization:

• Changing stepper (ATLAS with G4 support) - 15-20% potential CPU gain

24

– first using G4AtlasRK4 stepper with G4 9.2

– 1 week of validation for ATLAS (in a cache already)

– Next validation G4Nystrom in G4 9.3 (improves on revised G4AtlasRK4
avoiding extra square roots added.)

– Should be delayed until ATLAS adopts G4 9.3

– Optionally the caching of the magnetic field via G4CachedMagneticField
for additional small CPU gain

• Optimizing primary pseudo-rapidity cut (ATLAS) - 0-20% potential CPU
gain

– 1 week of preparation for ATLAS

– 2 weeks of validation for ATLAS (cache-ready)

• Neutron energy cut - 5-10% potential CPU gain

– 1 week of preparation for ATLAS

– 2 weeks of validation for ATLAS (cache-ready)

Memory “Churn” Optimization:

• G4TouchableHistory (25% of the total churn per event, addressed by patch
“atlas3.” Potential CPU gain of 2-4%. Already tested by Geant4 and
by ATLAS in atlas3.)

– 1 week of validation for ATLAS

Memory Optimization (actions to reduce the total VMEM, and thus RSS):

• “Light” Oracle library versions (∼40 MB)

– Very short technical validation for ATLAS

• Changes to voxelization (∼80 MB) - improvements prepared in consulta-
tion with Geant4/ SFT team (during 2009)

– 1 week of preparation for ATLAS

– 1 week of validation for ATLAS (cache-ready)

All Three:

• Effect of allocators was seen to be below 2% on CPU. It could be less of
an issue in future, if memory churn is much reduced. However, effects on
both CPU and memory should be evaluated for various drop-in allocators
(including the newest version of malloc).

– 1 week of preparation for ATLAS

– 1 week of performance assessment for ATLAS

25

– 2 weeks of validation for ATLAS

Some development is necessary for the following options. It is difficult to
estimate the potential gain without a prototype implementation, so we have
chosen to mark upper bounds to give some guide.

CPU Optimization:

• QGSP BERT (rewrite from translated fortran, which may be available for
testing soon) - <20% improvement

– Several months development for Geant4

– Several months validation for Geant4

– ∼6 months validation for ATLAS, including testbeam validation

• Revising implementation of Liquid Argon Endcap (currently a big single
volume) - <10% improvement

– 6 months development for ATLAS

– 6 months validation for ATLAS

• Killing low energy electrons on creation in particular regions or materials
- <20% improvement

– 4 weeks of development and testing for Geant4

– 2-4 months of development, pre-validation and testing for ATLAS

– 2-4 weeks of validation for ATLAS

In particular for the potential reimplementation of the specialised solid for
the Liquid Argon Endcap, an effort involving all stakeholders to understand
the extent of the work required and the potential benefits, risks and limitations
should be undertaken.

Memory “Churn” Reduction:

• LArG4Identifier (responsible for 10% in atlas1, expect optimisation of at
least half of that)

– 2 weeks of development for ATLAS

– 2 weeks of validation for ATLAS (technical and physics)

• QGSP BERT (responsible for 40% of the churn per event in atlas1 - be-
fore improvement to geometry module) This should be revisited after the
Bertini rewrite available for testing later this year

• G4NavigationHistory (constructor) - (responsible for 25% of the churn per
event in atlas1) Unclear what actions should be taken. Some revision of
ATLAS geometry should be considered (particularly in the inner detector).
This should be considered a low priority.

Memory Reduction (actions to reduce the total VMEM, and thus RSS):

26

• Liquid argon field map in the endcap changing double to float in two places
(13MB)

– 1 week of development for ATLAS

– 1 week of validation for ATLAS

• Conditions release (16MB)

– 2 weeks of development for ATLAS (some already complete)

– 1 week of technical validation for ATLAS

• Further GeoModel release (<50MB, but uncertain exactly how much)

– 2 weeks of discussion and development for ATLAS

– 1 week of technical validation for ATLAS

• String mangling in assemblies (10-15MB)

– 1 week of development for Geant4

– 2-4 weeks of development for ATLAS (muon sensitive detectors would
need to be modified)

– 2-4 weeks of validation for ATLAS

• Releasing additional libraries / objects once they are unneeded (uncertain
results)

– Several months of development for ATLAS

– Short validation for ATLAS

Other Necessary Optimization:

• Geant4’s transportation must improve its treatment of stuck and aban-
don tracks. These tracks can cause significant problems in a production
system that automatically re-tries failed jobs many times. In order to en-
sure that the physics results are not incorrect, the events currently must
be abandoned. Several ideas already exist for improving the treatment,
but they must be implemented.

– 2 weeks of development for Geant4

– 2 weeks of testing for Geant4

– 1 week of testing for ATLAS

– 1 week of validation for ATLAS

27

References

[1] K. A. et al., ATLAS Simulation Infrastructure, ATL-SOFT-INT-2010-002
(2010) .

[2] This report on the web,
http://docs.google.com/View?id=dqzmfc8 19g4v8vcdk.

[3] Geant4 User’s Guide for Application Developers,
http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/.

[4] A. R. et al., First Report of the Simulation Optimization Task Force,
ATL-SOFT-PUB-2008-002 (2008) .

[5] Physics Lists of Electromagnetic Physics Working Group,
http://geant4.cern.ch/collaboration/working groups/electromagnetic/physlist.shtml.

[6] Valgrind , Http://valgrind.org/.

[7] Hephaestus, a Memory Tracker for Athena,
Https://twiki.cern.ch/twiki/bin/view/atlas/usinghephaestus.

28

Appendices

Profiling “Recipes”

In this appendix we collect some recipes for profiling ATLAS simulation with
hephaestus and callgrind, as explored in Section 3. For minimum bias events,
we use a modified version of the
test ATLAS Template.py job option from the ATLAS simulation G4AtlasApps
package. For tt̄ events, a modified version of the jobOptions.G4Atlas Sim.py
job option is used, with a small private sample of tt̄ generator-level events used
as the input via the athenaCommonFlags.PoolEvgenInput variable. In all cases,
the G4 hits file output was disabled via a call of
athenaCommonFlags.PoolEvgenOutput.set Off(), since the results of the run
are not of interest when profiling, and disabling this avoids potential filesystem
permission/quota problems. In all cases for this study, the number of events
was explicitly set via theApp.EvtMax = 50.

The run environment is set up as usual with an ATLAS CMT configuration,
with the
PREPEND PROJECT AREA requirements macro and prependProject tag used as
needed to use the non-standard builds of AtlasSimulation with the different G4
builds. The run scripts listed below show the explicit CMT configurations used.

Hephaestus profiling

The job options files are first modified to enable Hephaestus instrumentation,
adding the following at the top of the file:

Hephaestus for G4
import Hephaestus.MemoryTracker as memtrack
memtrack.configure(memtrack.PROFILE)
memtrack.trace(’’) # resets
memtrack.trace(’G4TrackingManager::ProcessOneTrack’)

The following scripts are used to start the job for minimum bias:

#!/usr/local/bin/bash

source setup.sh -tag=15.6.1,32,noTest,prependProject,AtlasSimulation

RTTNUM=101201
export USETCMALLOC=false
‘which python‘ ‘which athena.py‘ --stdcmalloc --leak-check-execute \
-c "RTTRunNumber=$RTTNUM" test_ATLAS_Template.py

and for tt̄:

29

#!/usr/local/bin/bash

source setup.sh -tag=15.6.1,32,noTest,prependProject,runtime,AtlasSimulation

export USETCMALLOC=false
‘which python‘ ‘which athena.py‘ --stdcmalloc --leak-check-execute \
jobOptions.G4Atlas_Sim.py

Runs of these scripts typically take 24-48 hours to finish, hence they are
usually run under ‘nohup’, with output logging to file. The output, in addition
to the standard Athena outputs and auxiliary files, consists of two files: hep-
haestus.prof and hephaestus.symb. These are two zip archives containing the
profiling information in a intermediate format: a large amount of disk space is re-
quired, several GB for each run in these cases. The utility /afs/cern.ch/user/w/wlav/public/hep prof.exe
is then called from the directory containing the hephaestus output files to pro-
cess these files and generate a summary file, output heph.cgc, that can be read
by kcachegrind. This generation may take a long time, due to the several-GB
size of the hephaestus input files, but the output is typically only a few MB.

Callgrind profiling

The job options files are first modified to add callgrind instrumentation, adding
the following before the import of the G4AtlasApps.SimKernel:

For callgrind instrumentation
from AthenaCommon.AppMgr import ServiceMgr
from Valkyrie.JobOptCfg import ValgrindSvc
ServiceMgr += ValgrindSvc(OutputLevel = DEBUG, ProfiledAlgs = [])

The following scripts are used to start the job for minimum bias:

#!/usr/local/bin/bash

source setup.sh -tag=15.6.1,32,noTest,AtlasSimulation

export USETCMALLOC=false
valgrind --tool=callgrind --trace-children=yes --instr-atstart=no \
--num-callers=8 --dump-every-bb=20000000000 ‘which athena.py‘ \
--stdcmalloc -c "RTTRunNumber=101201" test_ATLAS_Template.py

and for tt̄:

#!/usr/local/bin/bash

source setup.sh -tag=15.6.1,32,noTest,AtlasSimulation

export USETCMALLOC=false

30

valgrind --tool=callgrind --trace-children=yes --instr-atstart=no \
--num-callers=8 --dump-every-bb=20000000000 ‘which athena.py‘ \
--stdcmalloc jobOptions.G4Atlas_Sim.py

After starting a run of one of these scripts, Athena will stall until some aux-
iliary processes are killed. To identify these, call “ps aux — grep callgrind” and
examine the output. The “dumpRunNumber” processes, and the related sed
and grep processes need to be killed with the -9 signal. There will typically be
two of each of these... of course there is no need to kill the “grep callgrind” pro-
cess! Once the processes have been removed, execution will proceed as normal.

Since these runs are extremely slow – typically 1-2 weeks for 50 minimum bias
events, and 2-4 weeks for the 50 tt̄ event runs (informally, the G4.9.2.p2.a3 and
G4.9.3 runs were noticeably faster than those forG4.9.2.p2.a1) – it is essential
that they be run under nohup with output logging to file. When finished (or
even before completion, if desired), kcachegrind may be run on the large number
of callgrind.* output files: all these files will be needed for a complete analysis
– during the run, callgrind will rotate the file names to avoid generating one
massive file for the active process, so all the e.g. callgrind.12345.* files are
required as well as callgrind.12345 itself. These files will typically be several
hundred MB to 1 GB in total size, per run.

31

Figure 7: Call graph (and costs) of the simulation of 50 tt̄ events (atlas3 patch).32

Figure 8: Different contributions of the time spent in the G4CrossSection-
DataStore::GetCrossSection method (∼4.5% of CPU time).

33

Figure 9: Call graph for the G4Transportation::AlongStepGetPhysical-
InteractionLength method (56.75% CPU time).

34

Figure 10: Call graph for the simulation of continuous processes (6.34% CPU
time).

35

Figure 11: Call graph for the simulation of discrete processes (∼15% CPU time).

36

Figure 12: Further details on the simulation of hadronic interactions (∼3% of
CPU time).

37

