
HEP	 Software	 Foundation	
Input on scope, purpose, intent and organization by INFN members.

Disclaimer:
The following document represents the point of view of a limited number of INFN scientists
and professionals working in the context of computing in HEP and Nuclear Physics. The
official standing of INFN on such matters, properly signed by the management, will be
produced at a later stage.

D. Menasce, on behalf of these INFN members.

Background	

Scientists involved in research in Physics, in particular in Experimental High Energy
Physics have become accustomed to rely for their work on the existence of a rich and
varied portfolio of software suites or even complete frameworks that have been
developed by different organizations over the years. Notable examples are well
known, like ROOT and Geant4 in the context of frameworks and libraries, but also
VOMS and CREAM in the context of Grid Middleware, but several others exist and
are utilized on a wide range of purposes and uses. The examples mentioned pertain to
two different domains: the first being the software components directly employed by
users in the context of experiments and physics analysis, while the second domain is
part of the infrastructure currently used by the experiments for the management of
large amounts of data in a heterogeneous computing environment like the Grid. Both
domains are crucial for the researches but the infrastructure layer (Grid, as a catch-all
name) is by many taken for granted (somebody is doing it for everyone and is
therefore more of interest to a specific group of professionals) while components of
the first domain have a more direct influence on the development of code by end-
users who therefore manifest a particular sensitivity to it.
All of these components need to evolve over time to take into account new user needs
as well as advances in technology, but this evolution requires sustainable funding,
coordination and an appropriate technical forum where stakeholders can exchange
their different views and solutions. Moreover, the foreseen evolution must take place
without disruption on the availability of existing components, taking also into account
backward compatibility (at a reasonable level at least). So far all existing systems
were proposed, started their development and began production without or little
concern about their mutual interaction, the adherence to specific standards (e.g. for
interoperability) and the establishment of appropriate evolution-schema to adapt to
new technologies such as vectorization and multi-threading.
Since sustainability of the production, maintenance and development of software with
adequately high levels of quality is of concern for all funding agencies, the proposed
Collaboration should try to involve as many communities as possible considering the
overlap of their mutual interests and expertise. Examples are, beyond HEP, the Astro-
Particle, Astrophysics and Nuclear Physics communities, but contribution from others

as well could be beneficial to provide a robust portfolio of software components
designed by professionals, but driven by specific and solid use-cases.

An informal survey in our country has shown that a Software Collaboration,
Foundation or Forum (non necessarily labeled HEP only) could, in principle and
under some assumptions, be a possible instrument to help managing the needed
harmonic evolution of the existing tools and packages as well as promoting the
emergence of new ones.

Goals	

From the meeting held at CERN on 3-4 April the message emerged that people in our
community are in general sympathetic with the idea that a stronger cooperation of the
stakeholders involved with the development and the maintenance of the common
software we rely on can be beneficial indeed, especially on the medium and long term,
but critical issues remain to be sorted out concerning the particular form in which this
cooperation will be stated formally and in detail. We feel it is premature, at least in
this particular document, to focus on such political aspects and prefer instead to
discuss what the developer and user communities consider important for their
activities and what their expectations are in this context.

In this document, for brevity, we will therefore concentrate on items not already
evidenced in contributions from other fellow institutions, with which we generally
agree.
We highlight, in the following, a few goals (among many possible others) that people
in our institution feel important in the context of the proposed Collaboration:

• The primary goal should be to achieve a sort of economy of scale: large
software projects (existing or proposed new ones) require adequate man-
power, infrastructure in the form of managed repositories, continuous contact
with the user community of reference, handling of a dashboard with project
details and up-to-date documentation, an efficient help-desk with very quick
response capabilities, tutorials and many more of those costly attributes. All
existing packages, tools or frameworks have, at various levels, implemented
their own infrastructure to deal with such matters. Merging these
commonalities, providing a unified model for the deployments and
maintenance of these packages could be of help in abating costs. A large part
of the foreseen evolution of software computing technologies relies on
advanced vectorization and parallelism, which is a field cutting across many of
the existing tools and packages in use by our communities. Factorizing this
specific domain of expertise could help developers in specific areas to
concentrate on the development of their own tool, seeking advice from a
selected group of professionals devoted to the most technical aspects of
modern computing. This would require the establishment of a sort of open
forum of experts in various domains of computing to which developers might
refer for their work. Again, having just one such group (or a limited number,
to preserve bio-diversity) could in principle help achieving an economy of
scale by providing a high level of expertize with a uniform approach to all
software components, avoiding the frequent syndrome of reinventing-the-

wheel. To this extent the collaboration should also be proactive in suggesting,
whenever possible and advisable, already existing solutions to proposed new
project by regular surveys of the marketplace.

• A second goal, equally important, is to foster multidisciplinarity. HEP is a
prime example of the merging of a vast number of disciplines, ranging from
low-energy Nuclear Physics to extremely high energy phenomena, cutting
across detector technologies involving solid state physics, optics, electronics
and real-time computing, just to name a few. In this scenario the involvement
of expertise from the relevant domains is of paramount importance whenever
possible. To make a concrete example: the Geant4 toolkit incorporates
theoretical and experimental knowledge from several physics domains and, as
such, its continuous development along with thorough validation requires
expertise in all these contexts, which is something seldom found within a
single physics community. Since it is deemed necessary for many toolkits to
evolve, in particular from a sequential approach to a parallel/multi-threaded
technology, the appropriate convergence of mutual expertise in both physics
and computing must be accomplished. One goal of the collaboration, among
others, should therefore be to promote the creation of an appropriate venue (a
technical forum) where these aspects could be discussed, designed and
reviewed, leaving the final development of the code in the hands of specialists
of the specific domain the toolkit is supposed to address.

• One of the major barrier users find in adopting or employing software is lack
of appropriate training and tutorials. Software complexity has increased over
time much more rapidly than the capacity of people to learn new
technologies/methodologies on their own, and plain documentation of tools
like Geant4 are no longer sufficient to overcome the initial barrier to adoption.
Therefore we feel that one of the important goals of the collaboration, besides
coordinated exchange of ideas about the evolution of these software
components, should be the establishment of a permanent training
infrastructure, where people can acquaint themselves with new advances and
improvements in technology: something akin to the CERN School of
Computing or the INFN annual School of Bertinoro, but directed more to
accomplished scientists than to young students only, who usually have more
time and attitude to self-learning. New tools, even when they are exceptionally
powerful and useful, are adopted slowly by the community at large just
because of lack of this kind of proper tutoring. The establishment of an ad hoc
kind of SWAT-team could be of help, a team of specialists that work together
with the developers of a specific project or framework for a limited time to
bring them on the right track. Funding, sustainability and policy of action of
such a team is certainly a very critical and complex issue and we leave its
discussion aside here, but the whole research community could certainly
benefit enormously from the existence, availability and help of such an
infrastructure.

• Another possible goal of the collaboration should be a technical forum, where
user requirements are collected and prioritized and proper decisions are taken
in order to satisfy them in an efficient way.

• An important keyword in modern computing (maybe the most important one)
is interoperability, which stems from the existence and adherence to

appropriate standards. There is a long list of organizations that promote
standards in the field of Computing and we consider strategic the participation
of members of the proposed “Collaboration” to as many such bodies as
possible, in order to make the voice of our user and developer communities be
heard with the necessary advance time, before critical final decisions are
taken. Our participation to these activities will also have the benefit of keeping
our community at the cutting edge of software evolution at a time when
technical knowledge of this kind can make a difference in improving the use
of our computing resources in terms of energy efficiency.

• Finally, we deem essential that all software dealt by the “Collaboration”
should be based upon some variant of the Open Source Licensing scheme.
This brings into focus the problem of Intellectual Property, which should be
thoroughly examined and discussed: as a general principle, the IP should be in
the hands of the developers or their Funding Agency, but the details are many,
subtle and out of scope of this document.

	 Scope	 and	 Duration	

Let’s briefly review the panorama of existing HEP SW components:
1. Toolkits of very general use like Geant4 and ROOT. These are mature projects

that may need to upgrade to new computing technologies such as
vectorization/parallelism and concurrency, but also take into account new
features and advantages brought forward by advances in the C++ language
(C++11 yesterday, C++14 today, moving towards C++17 tomorrow). Some or all
of the toolkits in this area may greatly benefit also of advances in the technology
of continuous integration, code performance analysis (both static and dynamic)
by sharing some of the underlining components. Also new languages and
compilers are merging and adequate knowledge in these areas is also very
important.

2. Middleware components developed for the GRID that need to be maintained to
allow current operations for the LHC experiments (but not only), some of which
could even evolve to be used also in Cloud computing environments (such as
VOMS, for e.g.).

3. Packages and frameworks born within a single experiment, with potential of
more widespread usage. Notable examples are RooFit, VDT, glideinWMS, Panda,
AGIS, Gaudi, etc. The authors are committed to keep the software functional for
the hosting experiment, but they see the potential of an enlarged user basis, and
are generally keen on helping with its adoption, provided the process is not
disruptive for the main use case, enhances visibility for the authors and possibly
enlarges the number of developers/contributors. This process constitutes another
possible instance of economy of scale.

4. Software that is deeply linked to a single experiment, like a reconstruction code
for a specific detector, algorithms linked to a specific framework and such. Here
also there is some room for reusability, provided that developers could be
supported in their efforts by a forum where they discuss and agree on standards
for the public interfaces.

INFN members manifest a particular interest in two specific areas, namely GRID
software maintenance and development and simulation, even tough the arena of
software used in the HEP community is certainly larger than this.

INFN has significantly contributed to the development of the GRID middleware over
many years with important components such as VOMS or STORM (just to name a
few) and this middleware needs still to be maintained to guarantee the requirements
put forward by the current operations of the LHC experiments as well as their
foreseen upgrades. Moreover, as mentioned before, some of these software
components could become essential parts in future of the current Cloud stacks,
representing components now missing, allowing for an integration of the Grid
computing model into the Cloud paradigm. Resources for these projects could come
from the Horizon2020 program, but this would require a substantial synergy between
different institutions in different countries: the Software Collaboration could provide
the seed for such a synergic activity.

For what concerns simulation, we consider important the following:

Multi-disciplinary software
Some of the software systems and associated projects relevant to HEP are intrinsically
multi-disciplinary:
1) they require or profit from competences contributed by scientific communities

other than HEP (e.g. HEP experiments would benefit from the expertise of the
nuclear physics community for the simulation of hadronic interactions in
calorimeters);

2) they are also used in non-HEP research, industry and applications of social
interest: the variety of applications making use of software originating from HEP
is beneficial to demonstrate the impact of HEP on society at large.

A notable example is Geant4, to which both characteristics of multi-disciplinarity
apply.

The HEP Software Collaboration should support multi-disciplinary software with
appropriate governance models and technical infrastructure. It should enable and
facilitate the participation of institutes and scientists not directly associated with HEP
to multi-disciplinary projects.

Risk Management
Risk analysis should be regularly performed in all areas of activity of the HEP
Software Collaboration and adequate risk mitigation strategies should be adopted.
Special attention should be devoted to mitigating the risk of significant conceptual,
architectural, functional and technological changes to software currently in use, which
could be disruptive to HEP experiments and to the advancement of science in general.
A fine-grained, component-based approach is desirable to mitigate potentially
disruptive risks in critical areas, such as changes in the paradigm of particle transport.

Scientific identity
The scientific research character of projects associated with the HEP Software
Collaboration should be recognized. They should be considered on a peer level as
research in HEP experiments, rather than services or mere support to the experiments.
Scientific acknowledgement of software-oriented projects is crucial to attract
distinguished scientists – rather than just technical programmers – to work at them. It
is also essential to attract physics students to areas that require long training to build
expertise. Recognition should also come from possibility of career advances in
academia, on par with communities working in areas such as detector construction,
electronics or solid state.

Evaluation
The HEP Software Collaboration itself and all its associated projects should be
subject to regular peer review. Reviewers should have a documented scientific and
technical background in the areas they are appointed to evaluate, and should be free
from conflict of interest. The review process should be open in all its phases.
Scientific achievements should be regularly documented in scholarly journals.

Finally, for what concerns duration of the Collaboration, we think it should become
permanent: software never reaches a final point of development, either continues to
evolve or it simply becomes obsolete. Therefore, if a viable form of collaboration
could be built to harmonize the development of software tools and libraries, it would
be useful to construct it as a continuous work in progress since its inception.

Governance	 Model	

The governance model should be as thin as possible, as already stated by many, and
should essentially provide a body that acts as a sort of glue or contact between
developers in various fields and contexts, promoting exchange of architectural ideas
or even just technical details in a harmonic way, avoiding duplication of efforts where
possible and sharing of common practices and ideas in different areas.

The first priority should be to identify what benefits the collaboration could provide
with respect to the existing development approach, while the identification of an
appropriate model of governance could be the focus of discussion at a later stage,
taking into consideration analogous approaches taken by Open Software organizations
such as Apache or Boost.

Membership	

Membership of the collaboration governance should be decided by each Funding
Agency Management, depending on the chosen agreement, but participation in just
the Technical Forum, instead, should be open to anyone interested, both as a user and
as a developer. This would ensure that all voices are somehow represented, at least in
exposing use-cases to the overall audience: proposals for further action could then be
assembled by a thin layer of conveners, who would suggest priorities and goals to the
developers, agreeing on milestones with them and leaving ample autonomy to each
individual development team.

